Internal axial light conduction in the stems and roots of herbaceous plants.

نویسندگان

  • Qiang Sun
  • Kiyotsugu Yoda
  • Hitoshi Suzuki
چکیده

In order to reveal any roles played by stems and roots of herbaceous plants in responding to the surrounding light environment, the optical properties of the stem and root tissues of 18 herbaceous species were investigated. It was found that light was able to penetrate through to the interior of the stem and was then conducted towards the roots. Light conduction was carried out within the internodes and across the nodes of the stem, and then in the roots from the tap root to lateral roots. Light conduction in both the stem and root occurred in the vascular tissue, usually with fibres and vessels serving as the most efficient axial light conductors. The pith and cortex in many cases were also involved in axial light conduction. Investigation of the spectral properties of the conducted light made it clear that only the spectral region between 710 nm and 940 nm (i.e. far-red and near infra-red light) was the most efficiently conducted in both the stem and the root. It was also found that there were light gradients in the axial direction of the stem or root, and the light intensity generally exhibited a linear attenuation in accord with the distance of conduction. These results revealed that tissues of the stem and root are bathed in an internal light environment enriched in far-red light, which may be involved in phytochrome-mediated metabolic activities. Thus, it appears that light signals from above-ground directly contribute to the regulation of the growth and development of underground roots via an internal light-conducting system from the stem to the roots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular tissue in the stem and roots of woody plants can conduct light.

The role of vascular tissue in conducting light was analysed in 21 species of woody plants. Vessels, fibres (both xylem and phloem fibres) and tracheids in woody plants are shown to conduct light efficiently along the axial direction of both stems and roots, via their lumina (vessels) or cell walls (fibres and tracheids). Other components, such as sieve tubes and parenchyma cells, are not effic...

متن کامل

Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants.

Using a database of 2510 measurements from 287 species, we assessed whether general relationships exist between mass-based dark respiration rate and nitrogen concentration for stems and roots, and if they do, whether they are similar to those for leaves. The results demonstrate strong respiration-nitrogen scaling relationships for all observations and for data averaged by species; for roots, st...

متن کامل

The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants

We investigated allocation to roots, stems and leaves of 27 species of herbaceous clonal plants grown at two nutrient levels. Allocation was analyzed as biomass ratios and also allometrically. As in other studies, the fraction of biomass in stems and, to a lesser extent, in leaves, was usually higher in the high-nutrient treatment than in the low-nutrient treatment, and the fraction of biomass ...

متن کامل

Amount of Mn and Zn in herbaceous plants growing on industrial area of steel production companies in southeast of Ahvaz, Iran

In the present study, a field study was performed on some herbaceous plants growing in thesoutheast of Ahvaz, where some metal producing industries are active. The aim of this studywas to investigate and compare manganese (Mn) and zinc (Zn) accumulation in seven dominantherbaceous plants in this area. Plant samples were collected randomly. Associated soils weresampled from the same sites next t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 56 409  شماره 

صفحات  -

تاریخ انتشار 2005